
KUPE for Parallel System

이철

박소은



Index

• Why Parallel Computing?

• Challenges of Parallel Computing

• Solutions

• KUPE Process

• Applying to KUPE

• Expected result



Why Parallel Computing?

Parallel Computing
• A type of computation in which many calculations or the execution 

of processes are carried out simultaneously
• Larger problems can often be divided into smaller ones

Why parallel computing?
• Due to the physical constraints preventing frequency scaling
• Hard to improve performance above the power wall

Using parallel computing
• Climate modelling
• Drug discovery
• Data analysis

[Reference: An Introduction to Parallel Programming by Peter Pacheco]



Challenges of Parallel Computing

Synchronization
• More than two threads read or write the shared resource at the 

same time

Communication
• More than two processes or threads use to share the data that are 

not in the same memory space of each process or thread
• For collaboration
• Message Passing Interface(MPI)

Load balancing
• Important that each thread computes the balanced amount of tasks
• For performance



Solutions

Synchronization
• Atomic execution

• Lock

Communication
• Pipe

• Blocking queue

Load balancing
• Task scheduling



KUPE Process



KUPE Process

Stage 1000: Plan and Elaboration
• Planning, defining requirements, building prototype, etc

Stage 2000: Build
• Construction of the system

Stage 3000: Deployment
• Implementation of the system into use



Stage 1000.

Plan and Elaboration



Activity 1003. Define Requirements

Description
• Write a requirement specification for a product
• Input: draft project plan, investigation report
• Output: a requirement specification

What is a requirement?
• A condition or capability needed by a user to solve a problem or 

achieve an objective
• A condition or capability that must be met or possessed by a system 

or system component to satisfy a contract, standard, specification, 
or other formally imposed document

• A documented representation of a condition or capabilities as in (1) 
or (2)



Activity 1003. Define Requirements

Functional Requirements 
- 사용자를계정별로관리한다.

• 계정은사용자가원하는대로생성하며사용자계정은 id/pw와잔액정보를
가진다.

• 계정별로잔액을충전할수있다. 

• 사용자는프린터사용전에계정을먼저생성해야한다. 

• Id/pw 가일치하는경우에만인쇄가가능하도록한다.

- 로그인, 로그아웃이가능하다. 

• 여러명의사용자가동시에요청을할수있다.

Ref. # Challenge Function Category

R1

Synchronization

Check parallelism Hidden

R2 Allocate sequence Hidden

R3 Identify sequence Hidden



Activity 1006. Define Business Use Case

Description
• To obtain a deeper understanding of the processes and 

requirements identified so far
• Identify business tasks as business use cases, and illustrate their 

relationships in use case diagrams
• Input: requirements specification
• Output: a business use case model (High-level use case)

Steps
1. Determine system boundary in order to identify what is external 

versus internal, and what the responsibilities of the system are
2. Identify the actors related to a system or organization

+) Identify multi-executed functions
3. Identify user goals for each actor
4. Record the primary actors and their goals in an actor-goal list 



Activity 1006. Define Business Use Case

5. Define use cases that satisfy user goals
6. Allocate system functions identified during the requirements 

specification into related use cases
7. Categorize identified use cases into primary, secondary, and 

optional use cases
8. Identify relationships between use cases
9. Draw a use case diagram
10. Describe use cases
11. Rank use cases according to the followings:

a. Significant impact on the architectural design
b. Significant information and insight regarding the design
c. Include risky, time-critical, or complex functions
d. Involve significant research, or new and risky technology
e. Represent primary line-of-business processes
f. Directly support increased revenue or decreased costs



Activity 1006. Define Business Use Case

Identify multi-accessed functions

Use Case Update total balance

Actor Users(multiple)

Description
-이 use case는전체수익을갱신한다.
-다수의사용자가동시에접근하는지확인한다.



Stage 2030.

Analyze



Activity 2031. Define Essential Use Cases

Description
• Add event flows to business use case(high-level) descriptions
• Input: business use case descriptions (activity 1006)
• Output: an essential use case descriptions
• Standard applied : expanded use case format 

Step
1. Select each use case from business use cases
2. Identify system functions related to the selected use case from 

requirements specification
3. Identify related use cases to the selected use case from business 

use cases
4. Identify courses of events for each use case from the 

requirements specification
5. Write essential use cases based on typical and alternative 

courses of events flows by applying expanded use case format



Activity 2031. Define Essential Use Cases

Example: “Update total balance”
Use Case Update total balance

Actor Users(Multiple)

Purpose Update total balance

Overview
After a customer requests print, the system withdraw the balance. And 

then the total balance of the system is updated.

Type Primary

Cross Reference …

Pre-Requisites N/A

Typical Courses of Events
…

(S): Identify the simultaneously accessing threads
…

Alternative Courses of Events …

Exceptional Courses of Events
E1: If someone updates the balance already,

suspend until the previous update ends



Activity 2030. Define System Data 
Diagrams

Description
• To obtain data usage flow

• Input: Domain Model

• Output: Data diagram

Step
1. List objects from domain model

2. Assign usage-relationship between those objects



Activity 2033. Define System Sequence 
Diagrams

Description
• Illustrates events from actors to systems
• To investigate the system to build 
• Input: essential use case descriptions, use case diagram, system 

data diagram
• Output: a sequence diagram 

Step
1. Draw a black box representing the system based on a use case
2. Identify each actor that directly operate on the system from the 

typical(normal) course of events in a use case
3. Determine system boundary
4. Include the use case text which corresponds to system event to 

the left of the system sequence diagram 
+) Discriminate the simultaneously operated part of the program



Activity 2036. Define Operation Contracts

Description
• Define contracts for system operations

• Input: system sequence diagram, conceptual class diagram

• Output: operation contracts

What is a contract?
• A document that describes what an operation commits to achieve

• Written for each system operation to describe its behavior

• System Operation Contract: Describes changes in states of overall 
system when a system operation is invoked 



Activity 2036. Define Operation Contracts

Step
1. Identify system operations from system sequence diagrams

2. Fill in operation name sections with contract’s names

3. Fill in responsibilities sections

4. Fill in post-condition sections

5. Fill in pre-condition sections

6. Fill in other (optional) sections 



Activity 2036. Define Operation Contracts

Operation Contracts

Name Update total balance

Responsibilities Update the total balance of the system

Type System

Cross Reference …

Notes …

Exceptions N/A

Output N/A

Pre-conditions Identify the simultaneously accessed objects

Post-conditions Display the result



Activity 2038. Refine System Test Case

Description
• Refine system test plan by using additional information

• Input: essential use case description, system test plan, sequence 
diagram, system data diagram

• Output: refined system test plan

Step
• Refine the results of activity 1009 with the results of analyze 

process



Stage 2040.

Design



Activity 2044. Define Interaction Diagram

Description
• Collaboration diagrams illustrate object interactions in a graph or 

network format
• To illustrate how objects interactions via messages to fulfill tasks
• Input: Real Use Case Descriptions, system data diagram
• Output: An interaction diagram
• Standards applied

Steps
1. Draw up actors
2. Deploy objects or classes participating each use case from the 

real use case descriptions and conceptual class diagram
3. Design a system of interacting objects to fulfill the tasks
4. Regard the use case description as a starting point 



Activity 2045. Define Design Class 
Diagram

Description
• Describes more details in conceptual class diagram

• Add navigability, dependency, data type, operation signature, 
parameters, return types, and so on

• Input: Interaction Diagram, Conceptual Class Diagram, system data 
diagram

• Output: A Design Class Diagram

• Standards Applied



Stage 2060.

Testing



Activity 2062. Integration Testing

Description
• Integration testing is the phase in software testing in which 

individual software modules are combined and tested as a group

+) Add synchronization testing

• Input : Class & Method definitions

• Output : Integration testing results, reports 



Activity 2063. System Testing

Description
• System testing of software or hardware is testing conducted on a 

complete, integrated system to evaluate the system's compliance 
with its specified requirements

• Input: Implements results, system test plan and cases

• Output: System testing results, reports

Steps
1. Identify system test cases before defined

2. Set the test data of test cases for testing

3. Performing system testing with system test plan and cases



Activity 2063. System Testing

System test case

Test 
number

Test item Description Use case
System

function

… … … … …

2 Intended result test
Identify the result after multiple threads 

execute the function

… … … … …



Expected Result

Guarantee the consistency of the parallel program

Clarify the data dependency between objects

Consequently, the process can reduce the unexpected result 
and prevent the malfunction of the parallel system



Q&A


